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Road, Dublin 4, Ireland 

Received 15 May 1978 

Abstract. For a two-dimensional field theory of bosons and fermions, we construct, using 
Dirac’s method, the quantum theory around finite-energy classical solutions with arbitrary 
bosonic and fermionic parameters. Quantisation around a space-translated and a super- 
translated solution of a supersymmetric field theory is a special case of our  treatment. 

1. Introduction 

Finite-energy classical. solitonic solutions to field equations are of current interest 
(Jackiw 1977). Such solutions are known to exist, for example, in the q 4  theory and 
the sine-Gordon theory in two-dimensional space-time. In constructing the quantum 
theory around such solutions, one pays special attention to the so called translational 
mode. This is a zero-energy solution of the eigenvalue equation of perturbations. 
This mode exists by virtue of space-translational invariance of the theory, and can 
easily be obtained by infinitesimally space translating the static solution itself. 

In theories containing fermion fields, one often encounters fermion zero-energy 
solutions (Jackiw and Rebbi 1976, Jackiw 1977). The origin of these may be traced to 
some supersymmetry (Salam and Strathdee 1975) of the field equations (Rossi 1977), 
at least for the particular background solitonic solution. Actually finite supersym- 
metry transformations (supertranslations) have been used (Baaklini 1977a) to con- 
struct fermion field solutions from known solutions in the bosonic sector of the theory. 
Since the Hamiltonian commutes with supertranslations, a supertranslated solution 
has the same energy as the ‘embedded’ bosonic one. Hence, the fermion solutions 
obtained by supertranslation are zero-energy solutions. 

The translational and the supertranslational modes are dealt with, in constructing 
the quantum theory, by expanding around space-translated and supertranslated clas- 
sical solutions, treating the translational and the supertranslational parameters as 
quantum variables (collective coordinates) on an equal footing with the other quan- 
tum field variables in the theory. Dirac’s generalised theory for dealing with con- 
strained systems (Dirac 1964) has been applied to construct the quantum theory 
around space translated solutions (Tomboulis and Woo 1976). A similar procedure 
has been applied to construct the quantum theory around a supertranslated classical 
solution (Baaklini 1978a). 

Our purpose in this paper is to consider the construction of the quantum theory 
around general parametrised finite-energy classical solutions which contain arbitrary 
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bosonic and fermionic parameters. These parameters may, for example, be due to 
bosonic or fermionic symmetry transformations. The formalism we develop affords 
greater generality and simplicity than previous treatments (Baaklini 1978a). 

In 3: 2 ,  we give some preliminaries about the two-dimensional model considered. 
In D 3, we expand around a superparametrised classical solution. We define the 

canonical variables and obtain the constraints and the Hamiltonian. 
In $4, we study the algebra of the constraints and follow Dirac’s method for 

putting the constraints strongly equal to zero and for defining the correct bracket 
rules. 

In $ 5 ,  we discuss the canonical quantum theory as well as the path integral 
formulation. 

In § 6, we give some remarks about the extension of this work to more interesting 
physical systems. 

2. Preliminaries 

We shall consider the theory described by the following Lagrangian in two-dimen- 
sional space-time, 

L = dx [$(aF@)*+$*89- U ( @ ,  9)]. (1) J 
Although we suppress internal indices, @ stands for a set of bosonic scalar fields 

and 9 stands for  a set of fermionic (classically anticommuting) Majorana spinor fields 
obeying the reality condition 

= c a p * @  ( 2  ) 

where C is a 2 x 2 charge conjugation matrix. A complex Dirac field may be consi- 
dered as a complex combination of two Majorana fields. 

In the special case when @ and 9 consist of one element each, and choosing 
U(@, 9) in the following form: 

U(@, 9) = $( vy@))2 + $*9 V”(@) (3 1 
where the prime on V ( @ )  denotes differentiation with respect to @, the theory 
becomes invariant (Baaklini 1978a, Di Vecchia and Ferrara 1977) under the following 
finite supertranslations: 

@ 3 @ + F9 - ;rev’(@) 
9 + 9 - (i8@ + v’(o))E + ice (ia + v”(@))*. (4 1 

Here E ,  is the fermionic Majorana spinor parameter of supertranslations. 
The canonical structure of the theory described by the Lagrangian (1) is very well 

known. However, it is instructive to recall this knowledge before expanding around 
finite-energy classical solutions. It should be recalled that the spinor field already 
presents second class constraints to be handled by Dirac’s method. Moreover, a point 
should be brought to our attention that taking the spinor fields as anticommuting, 
already at the classical level, provides a ‘smoother’ transition to the quantum theory. 

The canonical momenta conjugate to @(x, t )  and q a ( x ,  t )  are respectively, 

A(x,  t )  = dqx, t )  Na(x, t )  = (+i*(x, t)yo),. (5  ) 
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The classically anticommuting field variables Ya ( x ,  r )  and their conjugate 
momenta Na(x, t )  are odd elements of a Grassman algebra (Berezin 1966). Consis- 
tent Poisson brackets (antibrackets) may easily be defined for them (Casalbuoni 1976, 
Baaklini 1977b). 

We define the fundamental Poisson brackets (and antibrackets), 

{@(x, r ) ,  Jll(x’, r ) }  = S ( X  -x’) 

{qa(x ,  r ) ,  No(x’, r ) } =  S ~ @ S ( X  -x’). 

The Hamiltonian is 

A prime on @ or Y denotes differentiation with respect to the space coordinate x. 
The second equation (5) implies the weakly vanishing (= 0) constraints 

for any two dynamical variables f and g. 
Using equation (10) we obtain, for instance 

Wa(X, t ) ,  Yo(Y, = (iYoC)apS(X - Y )  (11) 

Anticommuting variables have no physical interpretation at the classical level. 
Their physical interpretation takes place in the quantum theory. The classical solu- 
tions of the above theory are thus restricted to Y = 0. In the latter situation, we know 
(Baaklini 1978a, Di Vecchia and Ferrara 1977) that by choosing V(@) in a specified 
way, in the supersymmetric theory, we would obtain the O4 theory or the sine-Gordon 
theory in the bosonic sector. These have well known (Jackiw 1977) static finite- 
energy solutions, which we shall denote by GC(x). 

The Hamiltonian (6) gives the energy of these solutions: 

From equations (4), we obtain the following supertranslated solutions 
parametrised by E ,  : 
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The supertranslational mode is just t,9c. It is a solution of the static fermion field 
equation, 

iy19’+ V”($,)q = 0 (14) 

in the background of &(x). 

analogous to space translating it, 
It is clear that the concept of supertranslating a classical solution is perfectly 

cpc(x>-, PC(X +XI. (1 5 )  

In the latter case, one obtains a family of solutions parametrised by X .  

3. Expansion around superparametrised classical solutions 

We have previously considered (Baaklini 1978a) the construction of a quantum theory 
around the supertranslated solution, by expanding the field operators as 

where q c ( x )  and GC(x, E )  were given by (13), and q(x, f), G ( x ,  t )  and E ( t )  were taken as 
the basic quantum variables. We have neglected space translations as in (15) and 
worked to the first order in ~ ( t ) .  

Now we deal with a more complete and general treatment. We take @ and 9 as 
multiplets of fields and the theory is not necessarily supersymmetric. We assume 
classical solutions qc(x, E : ,  XI) and i,bc(x, E : ,  X I )  that are parametrised by arbitrary 
bosonic parameters XI, i = 1 , .  . . , B, and fermionic parameters €2, m = 1,. . . , F, the 
latter being Majorana spinors. We construct the quantum theory without using the 
explicit dependence of the classical solutions on the bosonic or the fermionic 
parameters. 

Substituting equation (16) into equation (l), we obtain for the Lagrangian, 

Thus we obtain the following canonical momenta conjugate to cp(x, f), Xi(t), 
& ( x ,  t )  and E : ( t )  respectively, 

a 1 -  a 
P,(t> = J dx( cpcx + 1  yo - G~) 2 ax, 
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The  Hamiltonian is 

From equations (1 8). we obtain the following constraints: 

The  Hamiltonian (19) is defined up to the constraints (21). In order to put these 
constraints strongly equal to zero, we must follow Dirac's method (Dirac 1964) of 
introducing 'gauge-fixing' conditions for first class constraints and redefining the 
bracketing rules for the basic canonical variables. 

4. Gauge conditions and Dirac brackets 

From the third equation (20), we obtain 

1 2 K ( x ,  t ) ,  ' Z ~ ( Y ,  t)I = (iC-lyo)apS(X - y ) .  (22) 

Hence, 2xa(x ,  t )  are second class constraints and can be put strongly equal to zero, 
thus eliminating fju(x, t ) ,  by defining Dirac brackets as in the previous section. In this 
procedure, the fundamental brackets for cp(x, t ) ,  a ( x ,  t ) ,  X i ( t )  and E : ( f )  are 
unaffected. The  other dynamical variables will have the following one-starred Dirac 
brackets: 

{$u(x, $o(Y ,  t ) } * = ( i ~ ~ C ) a $ ( x - ~ )  
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Using the new set of fundamental brackets, we verify the following: 

{k,, 'K,}  = {I& %,"} = {3R,", 3 R ; }  = 0 (24) 
and 

{%, H }  = {%,", H }  = 0. 

Hence, ' K ,  and 'I?," are first class constraints. In order to put them strongly equal 
t o  zero, thus eliminating Pi([) and F,"(t), we have to introduce 'gauge-fixing' condi- 
tions. 

Corresponding to  'Ki, we introduce the conditions, 

and we have 
1 1  {lcl, 'C,} = 0 { Kl, C,)= WI,  -E1, 

where 

Hence, we can put ' K ,  as well as 'C ,  strongly equal to zero by redefining the 
following two-starred Dirac brackets: 

If, g}** =U, g>* +if, lK)*(/J - 3;1{1c,, g>* -If ,  'Cl)*(@ - W 1 K I ,  g)*. (29) 

Corresponding to 'K:, we introduce the  condition, 

Thus we have 

{3c," ( t ) ,  T; ( t ) }  = a,"; 

{"E ( t ) ,  ( t ) }  = U,"; + x,"; 
where 

Note that in obtaining equations (31), we have used the one-starred Dirac brackets 
of 'I?," ( t )  and &(x, t ) ,  since the two-starred redefinition (29) does not modify them. 
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Now we can put 'I?: (1) as wel! as 'c: ( t )  strongly equal to zero by redefining the 
three-starred Dirac brackets: 

if, g)*** =if, g}** +if, 3~,"}**[(o+~)-ia(a+~)-i1:~~3~';;, g)** 

- { f .  3 ~ , " j * * [ ( a  +~)-']:;:p"l'R;;. g}** 

-if, 3R:)**[(u +z)--lj:;{T;. gj** 

for any' two dynamica! variables f and g 

(33) 

5. The quantum theory 

The canonical theory is completely defined by the Hamiltonian (19) and the 
fundamental Dirac brackets, defined by equations (33), of the basic canonical vari- 
ables q ( x ,  i), n ( x ,  i), x,~/), &(x, t )  and ~ : ( t ) .  In the transition to the quantum theory, 
one considers the basic canonical variables as operators whose commutation (or 
anticommutation) rules are obtained from the above brackets (or antibrackets) via a 
factor ot (-- i )  times Planck's constant 

The quantum state is described by a wave-functional q5 of the canonical variables 
q ( x ,  r ) ,  XI@),  $dx, t ) c 2 ( t )  and time 

4 = c b [ c F >  $a, x,, €2;  t l .  (34) 

The Hamiltonian (17) can be used to set up a Schrodinger equation 

( 3 5 )  
a 
at 

H+=i--d. 

The constraints 'K , ,  'Ea, 3K,", 'C,  and 'c," all become strong operator conditions 
on the wave-functional 4. 

In the coordinate representation, we make the following replacements, in the 
Hamiltonian and the constraints, for the momenta in terms of ordinary and functional 
derivatives: 

i a  
Pi@)=-- 

i axi(t)' 

Note that q5 is an ordinary superfield (Salam and Strathdee 1975) in e,(t) ,  in which 
i t  has a finite power expansion. It is also a functional superfield in & ( x ,  t ) ,  in which it 
has an infinite power expansion. It represents a generalised soliton-meson state, 
characterised by bosonic and fermionic coordinates for the soliton as well as bosonic 
and fermionic mesons. Both the soliton and the meson sectors are supersymmetric 
when the initial theory under consideration is supersymmetric. This concludes the 
specification of the canonical quantum theory. 

In the path integral approach to quantum theory, one has to specify (Faddeev 
1970, Senjanovic 1976) the following transition amplitude: 
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where q and p are classical variables representing all the dynamical variables and their 
conjugate momenta, and are all the constraints including the ‘gauge-fixing’ condi- 
tions. 

Thus in our case, we obtain, after integrating over fju(x, t ) ,  

(dp dn- d P  d X  d+ db de j 

( 3 8 )  
where 

One can easily integrate over PI and S,“ as dictated by the delta functions. The 
Gaussian integration over n- can be done as usual. Then one is left with a functional 
integral in p, X I ,  I)u gnd €2. Feynman graph rules shouid be obtained for the 
propagators and the vertices involving the latter variables and possible ghost variables 
defined by the non-trivial functional measure in (38), for perturbative calculations. 

6. Discussion and conclusions 

We have considered in this paper the construction of a quantum theory in the 
background of superparametrised classical solutions with finite energy. Our formal- 
ism is general enough to cope with classical solutions containing arbitrary bosonic and 
fermionic parameters. However, the main such solutions of practical interest are the 
space-translated and supertranslated solitonic solutions. Thus classical solitonic solu- 
tions for bosonic field theories can be embedded in supersymmetric field theories. 
Moreover, the quantum theory can be constructed around the space-translated and 
the supertranslated solutions. 

We have been dealing with a two-dimensional field theory, a special case of which 
is supersymmetric. However, the same approach and techniques can be applied to 
four-dimensional field theories of physical interest. For example, we can consider 
(Baaklini 1978b) the supersymmetric extension of spontaneously broken gauge theory 
(Salam and Strathdee 1975). In that theory, there are the finite-energy monopole 
solutions (Jackiw 1977). For the construction of the quantum theory, one should 
expand around the space-translated, the U( l )  transformed, the gauge-transformed as 
well as the supertranslated monopole solutions. 

One may also consider (Baaklini 1978b) finite-energy (for example, black hole) 
solutions in gravity and supergravity (Baaklini et a1 1977). In this case, one should 
construct the quantum theory around the locally supertranslated as well as the general 
coordinate transformed solutions. 
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